Statistical Analysis:  Getting to the heart of the matter:  Is “this” really different from “that”


This is one of the key purposes of statistics.  We conduct experiments to determine with a certain level of confidence that a treatment mean is really “significantly” different than the control.  You may want to say that your educational program affected knowledge gained, diet over time, or weight loss.  This assessment is based on probability.  The greater the probability that you want to be able to say something is different, generally the greater the numerical difference has to be between the two means, and the error associated with that measurement needs to be low.  For example, if you want to be 99 percent confident that mean x is different from mean y, mean differences must be greater and the error associated with those means needs to be lower than if you were willing to accept 90 or 95 percent chance that the means are due to treatment and not chance.  So, if you are doing a program pre and post test scores or assessing participant weight loss in a diet program, you will want mean differences large and the variation around those mean scores or weight loss values to be small.


Generally speaking the more values that go into a test (ie, the greater the sample number), the greater confidence you have in the value.  If I have 10 test scores or 30 test scores, I should have more confidence in the mean score based on 30 test score (observations) compared to only 10 test scores.  This is the basis of the really poorly named “Student’s T” distribution, and the concept behind the “T test”.  


A normal distribution and a Student T distribution look very similar.  When your sample number approaches 30, they essentially become the same number.  This can be seen graphically below:


This graph shows that as you increase your sample size, the greater the confidence you have in a given value.  As you increase your sample size, you reduce the variability and the odds that you will have a value in the “tails” of the distribution.

Also, the “T statistic” changes based on the probability or confidence you use to say that one mean is different from another and based on the sample size.  All statistics books have a “T-table”.  Most journals publications accept a 95% level of confidence.  When a study reports that two means are different, they are at least 95% confident that the means are different due to treatment and not chance.  Conversely, this means that there is a 5% chance that the difference we find in a study were due not to the treatment imposed but by sheer chance.    

Confidence Intervals and T Tests:  


One can use each of these statistics to determine if two means are significantly different.   To say that two means are different, you must know the mean, standard error and the “T statistic”.  The T statistic will be based on the sample number and the probability of being correct that you choose.  If we have 14 pre and post test scores, and we want to use the 5% probability level, the T statistic to use is found in the T table with 13 df, and probability level of 0.05.  It would be 2.16.  


With this, then we can calculate the mean, std. error, and with the T statistic, calculate whether the means are different.  The formula is 
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Key   x = mean, s = std. deviation; n = sample number and tc is the T statistic
Example A:  In this example, you have two samples of pre and post test information.  The first set of pre and post tests came from the first time you taught the class.  The second set (pre/post test 2) came after the fifth time teaching it.   You want to use this to show your improvement as a teacher.


[image: image2.emf]PreTest  Post Test PreTest 2 PostTest 2

1 75 80 75 90

2 80 85 80 95

3 65 80 65 85

4 60 75 60 90

5 70 75 70 90

6 75 75 75 90

7 80 85 80 95

8 90 95 90 95

9 70 80 70 85

10 60 70 60 80

11 65 70 65 80

12 70 70Sy Pre 5.151099 70 85Sy Pre 5.151099

13 75 80Sy Post 3.414443 75 85Sy Post 1.815149

14 80 80 80 90

mean 72.5 78.57143 mean 72.5 88.2

variance 72.11538 47.8022 variance 72.11538 25.4

Sy * T 11.124 7.37424 Sy * T 11.124 3.9

Confidence Interval  =  mean +/- std error (sy) * T 

CI pre  mean CI =  61.1 - 83.5 CI pre 2 61.1 - 83.5

CI post  mean CI = 71-86 CI post 2 84.3 - 92.3


In the first pre/post test, the confidence intervals (CIs) overlap.  You can’t say that the pretest mean was different from the post test mean.  The second time you can say that the means are different because the two CIs do not overlap.   

T-test:  When we want to compare two means and say with a certain amount of confidence that they are different, you typically use a T-test.  Using confidence intervals as we did in Example A is one way to do this.  Using a two sample T test is another.   In Example B, we have mean scores from 7 watershed groups and 7 mean scores from those not taking the course.  Below you can see an excel spread sheet that calculates paired T tests. 
Example B:   


[image: image3.emf]Data Input

Treatment

A B

62 50

60 50

55 40

50 30

36 22

48 30 Treatment Mean Variance

44 20 A 50.71 83.57143

B 34.57 152.9524

Pooled Variance |t| P

118.26 2.78 0.0167

Mean difference 95% Confidence Interval for the mean difference

16.14285714 3.48 28.81

The two sample t test does not involve blocking as in the paired t-test or the 

Randomized Complete Block Design ANOVA.  The P-value is a test of 

whether the two means are equal.  P-values less than .05 will appear in green 

indicating significance at the 5% level.

*Variances that differ by more than a factor of five will show up in red.  

Pooling the variances is questionable.  Some statisticians will allow pooling as 

long as the difference does not vary by more than factor 10.

This test show (significant P value at 0.01 is less than 0.05) that the scores were significantly better with those that took the course. 

There is also an unpaired T test for instances where you don’t have pairs of data to compare.  

Analysis of Variance or the F-test 


When one does an experiment with several different treatments, analysis of variance or ANOVA helps one determine if the sample means collected in the study are the same or different.  In the previous example we looked at two means and the variation around those two means and used that information to say that they were different from each other.  When we conduct experiments, we may have many treatments.  You will likely want to know if all the treated subjects are different from the control subjects, and you might also want to know which treatments might be different from one another.  This is the purpose of ANOVA.


Experiments and the experimental design you choose to use can be simple or very complex. There can be one or more groupings or sources of variation.  One grouping or source of variation might be the treatments that you apply in the experiment.  Another grouping might be based on the experimental design you have chosen.   


When one uses ANOVA, one is essentially assessing the variation between treatments to the variation within treatments.  If that ratio is not greatly different, the treatment has no effect.  This is why we like to control unexplained error in our trials.  


Experiments are often grouped in specific ways to reduce unexplained error.  For instance a farmer allows you to have a trial on a sloping field along a side hill.  If you had a completely randomized study, you might end up with one treatment having three replicates where there was more water (and therefore higher yields).  You could block your experiment so that all of the treatments are placed evenly across the slope.  This experimental design is called a randomized block design where your treatments would be randomly placed in a block against the known source of error (e.g. available water, soil depth, or light).  The blocking is then a source of variation that can be accounted for in your statistical analysis.  


For example, you want to know if the yield of six sweet corn varieties are different.  ANOVA calculates a mean square for treatment (six varieties) and a mean square for error.  Mean squares are the sums of squares divided by the degree of freedom.  Based on the calculated ratio, one can determine the probability that treatments are different.  

Main Effects, Sub Effects, and Interactions


For example, you are interested in the interaction of caloric intake and food type on weight gain.  You might set up a trial where different groups of people eat different levels of caloric inputs:  1800, 2200, and 2600 calories per day.  The caloric intake would be experimental main effect.  Within these effects you may have subgroupings of primary food groups (no carb, all carb, or mixed).  This would be another source of variation.  You might be interested to know if caloric intake affected weight gain equally across food types or differently.  This is the purpose of analysis of variance.  In this case you would have three main effects, three subeffects, and an interaction.   
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