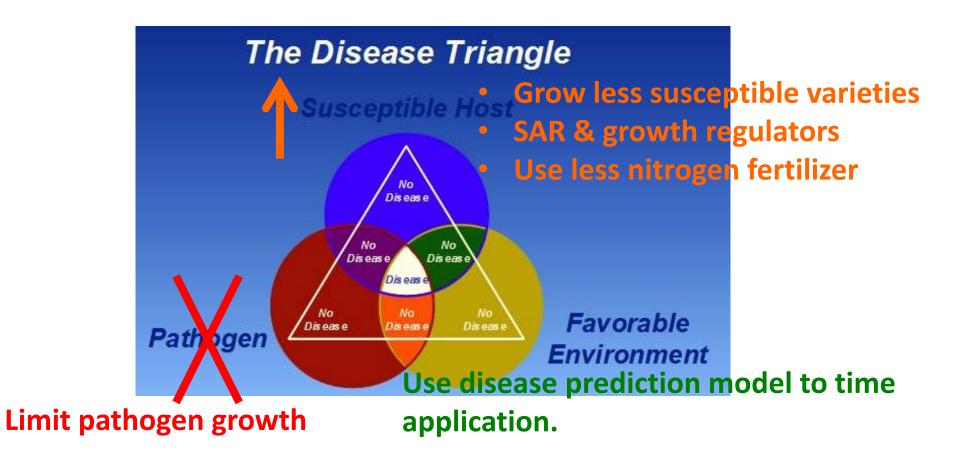
Fire blight prevention and suppression strategies

Quan Zeng, Plant Pathologist

Connecticut Agricultural Experiment Station

New Haven, CT



The Connecticut Agricultural Experiment Station Putting Science to Work for Society since 1875

Strategies to control fire blight

• Disease will occur when three components are fulfilled: the host, the pathogen, and the environment.

A year-round management strategy – the basics

	Winter / Early spring	Prune off fire blight cankers
•	Green tip	Delayed dormant copper
	Bloom	Use antibiotics, copper, biological controls to limit pathogen growth
•	Petal fall	Post-Bloom Petal Fall- Plant growth regulator treatment
	Active shoot growth	Prune off infected shoots

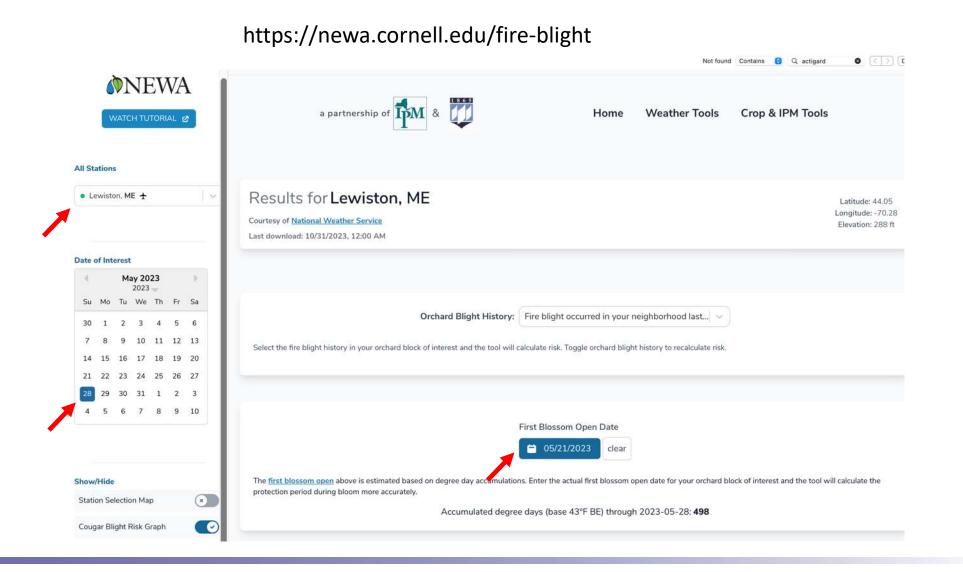
Terminal bud set

Prune off cankers

- Scout and prune out fire blight cankers
- <u>Do not</u> need to follow the 12 to 18 inches from edge of symptoms rule for winter pruning.
- <u>Do not</u> need to sterilize pruners during winter pruning!

Delayed dormant copper

- Only needed for blocks with fire blight history, with fire blight cankers.
- Helps to sanitize the orchard, kill any bacterial ooze produced from cankers.
- Also helps with apple scab control.
- Apply at green tip / tight clusters to avoid phytotoxicity, 1 application.
- Fixed copper at 15% metallic copper equivalent.



Bloom antibiotic spray

- Streptomycin (24 fl oz/A) for the 1st spray.
- Tank mix with Regulaid (1pt). It helps strep to disperse and absorb. Be wary of russeting risk of Regulaid+captan.
- Use NEWA Cougar Blight model to time your application!
- Apply in late afternoon as much as possible. Reasons: slow drying helps strep uptake, no UV degradation, Ea grows at night!
- Spray must dry before rain occurs!
- Good spray coverage is essential.
- If 2rd application needed, consider using Kasugamycin (Kasumin, 64 fl oz/A).

NEWA Cougar Blight model

CAES The Connecticut Agricultural Experiment Station Putting Science to Work for Society since 1875

NEWA Cougar Blight model

J. Download CSV

Results Table

En	morael	t Deta	1.0

Date (2023)	Cougar Blight VB Daily TRV Risk Levels: Marginal High Extreme	Infection Potential EIP value Risk Levels: Moderate High Infection
May 26	20	2
Мау 27	206	60
Мау 28	709	185
May 29	735	198
May 30	750	209
May 31	741	262
June 1	714	325
June 2	1000	281

* Indicates incomplete accumulation of the 4-day DH total. The DH value may reach "Caution", "High" or "Extreme" levels before spanning the 4-day accumulation cut-off time of Cougarblight.

Data (2023)	Rain Amount	Dew.	Leaf Wetness (hours)	Hours = 90% RH	RH max/min	Ava Temp ('F
May 26	0.00	Yes	a		100/34	52
May 27	0.00	Yes	6		100/24	68
Мау 28	0.00	Ves		2	97/13	70
May 29	0.00	yes		2	97/28	57
May 30	0.00	yes	10		-100/31	55
May 31	0.00	yes	0	7	100/43	61
June 1	0.00	Ves			93/31	71

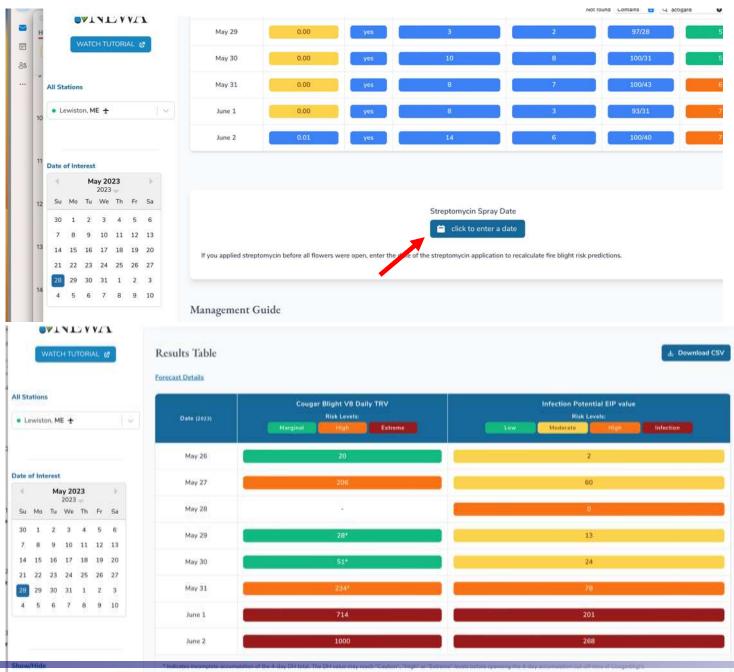
Management Guide

Blossom blight

CLE MANAGEMENT

Blossom blight risk predictions begin at first blossom open. If bloom in your orchard has not yet occurred, continue to check fire blight risk predictions and monitor bloom daily. Infection cannot occur without open blossoms.

Most serious fire blight epidemics begin with infection during bloom. Certain antibiotics can effectively protect against blossom infections when applied shortly before or immediately after they occur. The Cougarblight and Infection Potential risk levels are based on the principle that


1. a certain number of heat units must accumulate during bloom for a threshold level of inoculum to be reached;

2. a wetting event is necessary after this point to wash the bacteria to their infection sites; and

3. the average temperature is above 60F.

Marginal or Low risk	If none of these conditions is met during bloom, risk is 'Marginal' or 'Low' and bactericides are not needed.
Moderate risk	Infection Potential EIP risk is 'Moderate' and it is advisable to watch the forecast closely for continuing warm weather and rain.
	If two conditions are met during bloom, risk is 'High' and forecasted wetting events should be carefully considered and a bactericide applied just before (or after) a rain.
Extreme or Infection risk	If all three conditions are met, risk is 'Extreme' or 'Infection' and an antibiotic should be applied just before (or after) a rain.

Bloom spray alternatives:

- <u>Low-metallic coppers</u>
- Cueva
- Previsto
- Badge X2

• **Biologicals**

- Blossom Protect
- Serenade Opti, Double Nickle, Stargus
- <u>Contact sterilants</u>
- Oxidate
- JetAg

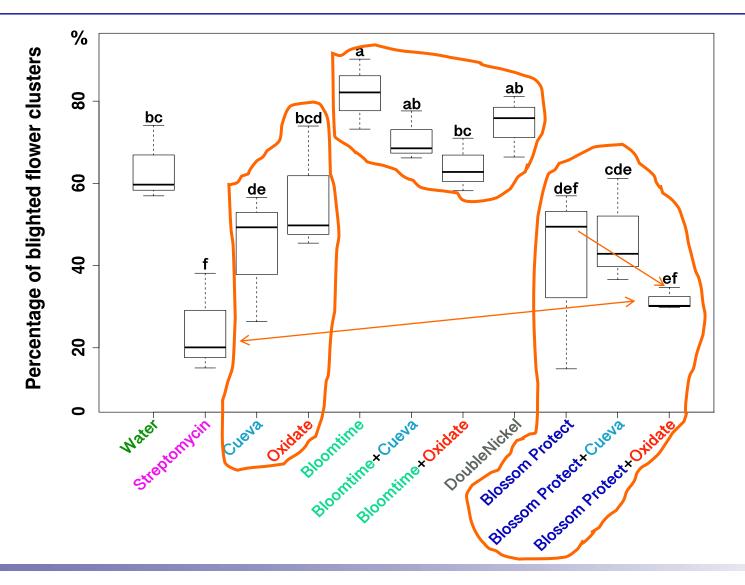
Field trial set up

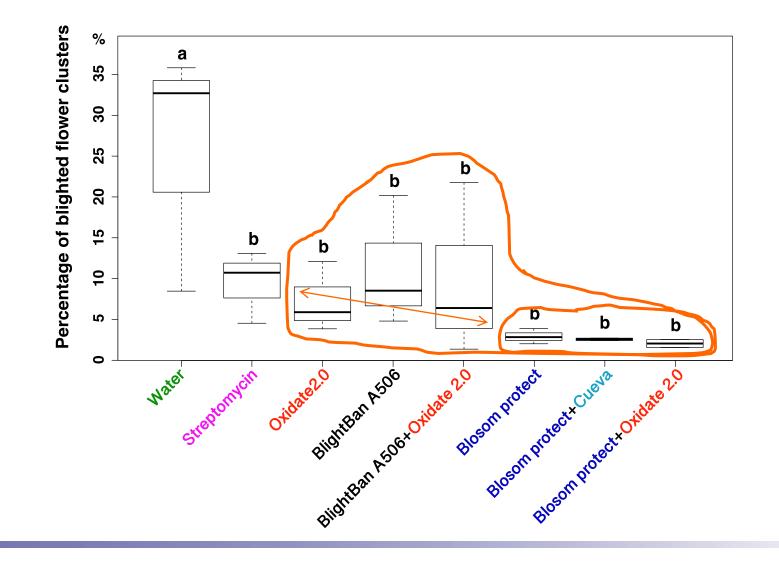
- 25-year old apple trees 'red delicious'
- 4 reps per treatment, in a complete randomized design.

Materials tested

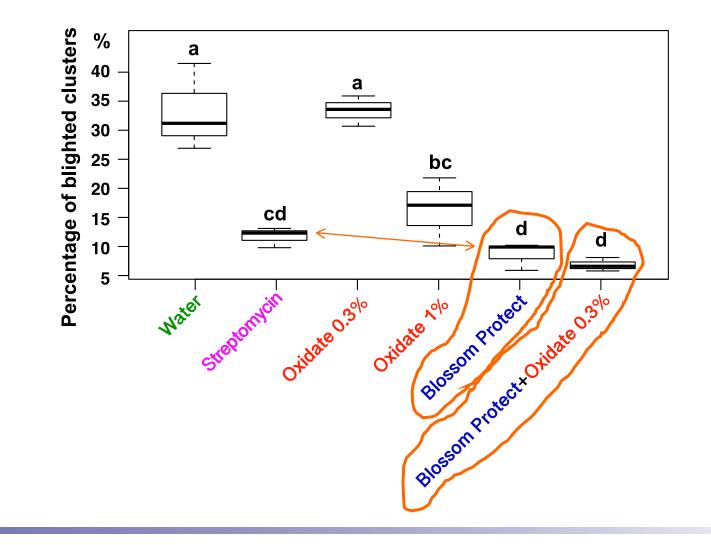
Treatment	Active ingredient
Double Nickel	Bacillus amyloliquefaciens, bacteria
BlightBanA506	Pseudomonas fluorescens, bacteria
Blossom Protect	Aureobasidium pullulans, yeast
Bloomtime	Pantoea agglomerans, bacteria
Cueva	Copper octanoate, organic bactericide
Oxidate 2.0	Hydrogen dioxide + peroxyacetic acid, surface sterilant
FireWall	Streptomycin, antibiotic
Water	control

Timing of application


- Biological controls: @ 30% and 70% bloom
- Copper / sterilant: @100% bloom and 24 hr after.
- E. amylovora inoculation: 10⁶ CFU/ml @ 100% bloom
- Disease rating: % of blighted clusters, 3 weeks later.



2017 Hamden CT trials

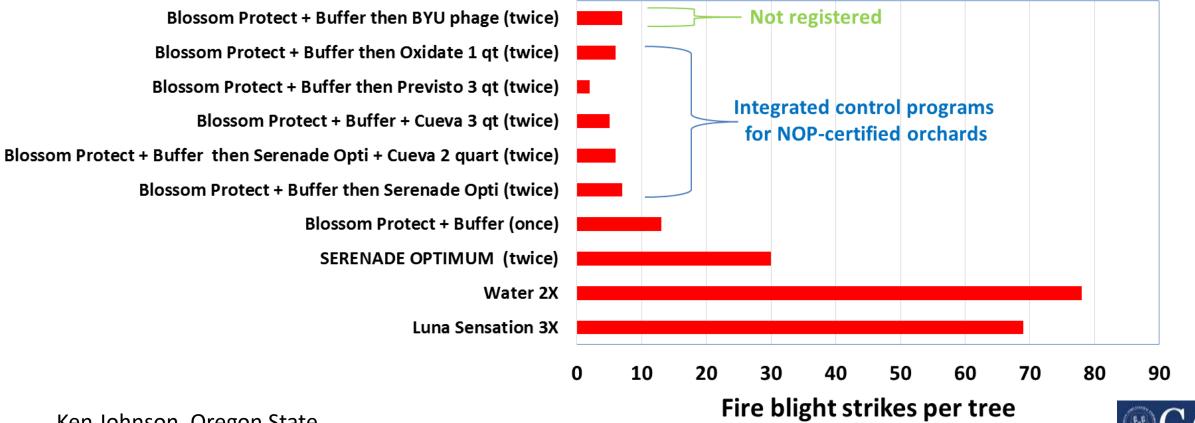


2018 Hamden, CT Trials

2019 Hamden, CT Trials

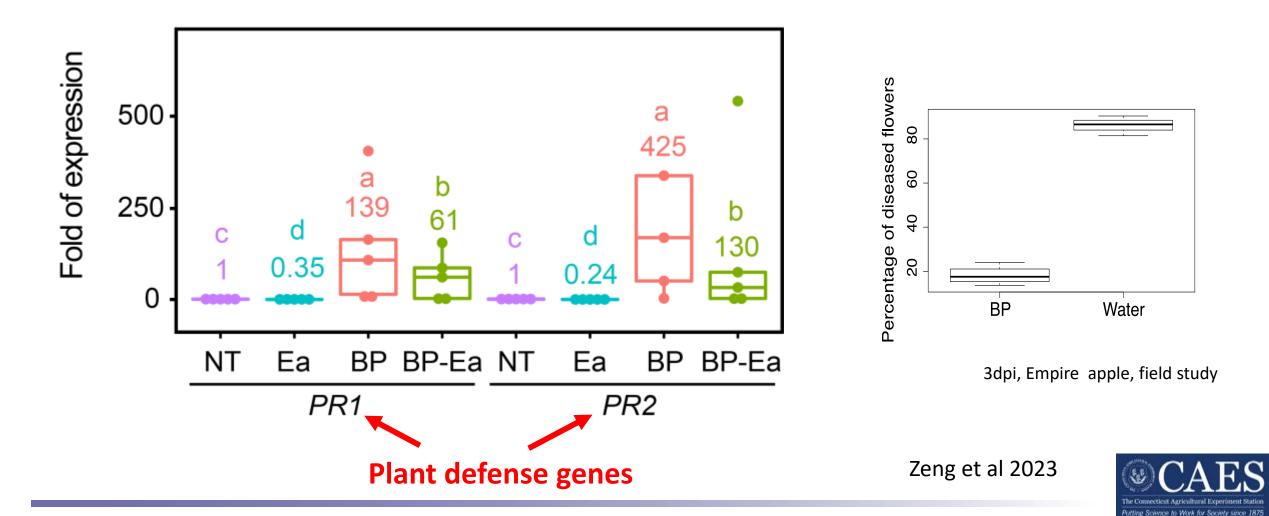
CAES The Connecticut Agricultural Experiment Station Putting Science to Work for Society since 1875

Comparison of organic and conventional controls


Equivalent to the percentage of control by Streptomycin

	2015	2017	2018	2019	Overall
Blossom Protect	45%	38%	138%	115%	84%
Blossom Protect + Oxidate	91%	75%	143%	130%	110%

Results in Oregon


Golden Delicious Apple 2015 - Corvallis, OR

Putting Science to Work for Society

Ken Johnson, Oregon State

Disease suppression mechanism of Blossom Protect

Russeting risk, under humid conditions

Summary of observations

- <u>Blossom Protect</u> provided consistent, high level of protection against blossom blight.
- The control effect of Blossom Protect can be further enhanced by organic bactericides.
- Other biological and organic chemical products provide some level of control and can be useful when disease pressure is low.

Recommended non-antibiotic fire blight control protocol

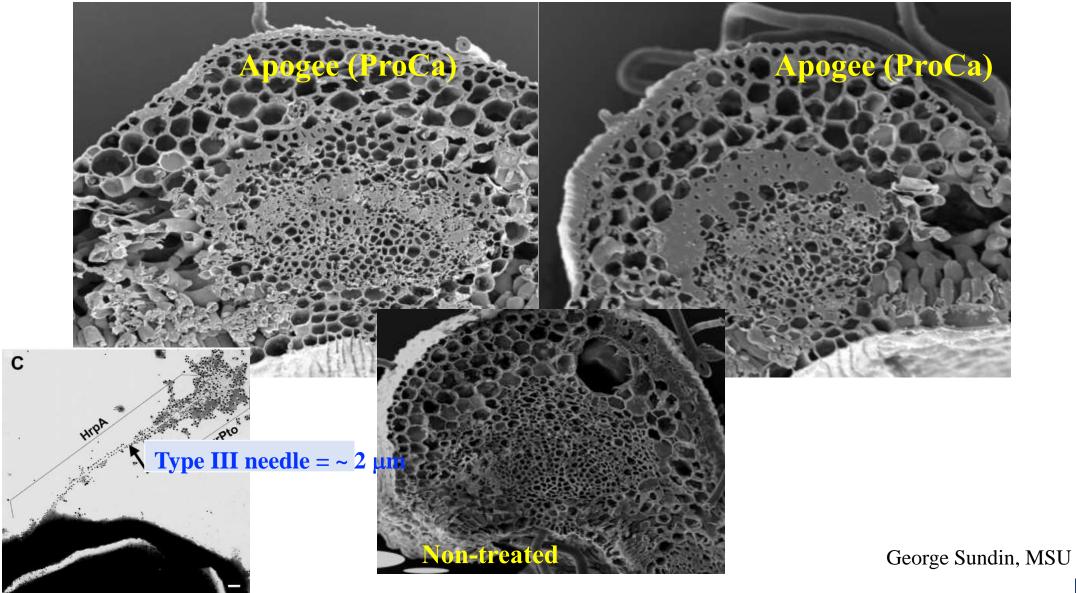
 <u>Early to full bloom</u>: two applications of Blossom protect (with buffer protect).
Essential,

<u>Full bloom</u>: one application of 0.3% Oxidate

regardless of prediction model results

Subject to adjustment based on

disease prediction models


• <u>24 hours after full bloom</u>: one application of 0.3% Oxidate (if disease pressure is high / history of fire blight).

- 1. Prohexadione Ca (Apogee)
- Thicken cortical parenchyma cell wall, Ea virulent structure could not penetrate.
- Also induces systemic acquired resistance (SAR).

- 1. Prohexadione Ca (Apogee)
- Thicken cortical parenchyma of cells wall, Ea virulent structure could not penetrate.
- Also induces systemic acquired resistance (SAR).
- 2. Acibenzolar-S-methyl (Actigard 50WG)
- Activates systemic acquired resistance (SAR) in the plant

Yuan et al 2023 Phytopathology 113: 2152-2164

- 1. Prohexadione Ca (Apogee)
- Apply after petal fall for 3 times, 8 oz / 100 g
- 2. Acibenzolar-S-methyl (Actigard 50WG)
- Apply during and after bloom, 8 oz / 100 g

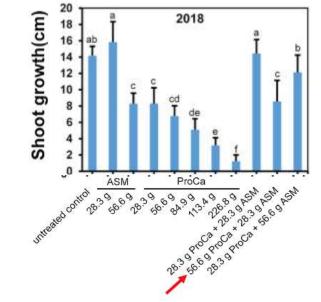
	L		
Treatment	June 20th	August 9th	
Non-treated	27.7	95.7	
Apogee (18 oz/A)	3.3***	9.8***	Keith Yoder, Virginia Tech

Maan na strikes ner 5 tree renlicate set

- 1. Prohexadione Ca (Apogee)
- Apply after petal fall for 3 times, 8 oz / 100 g
- 2. Acibenzolar-S-methyl (Actigard 50WG)
- Apply during and after bloom, 8 oz / 100 g

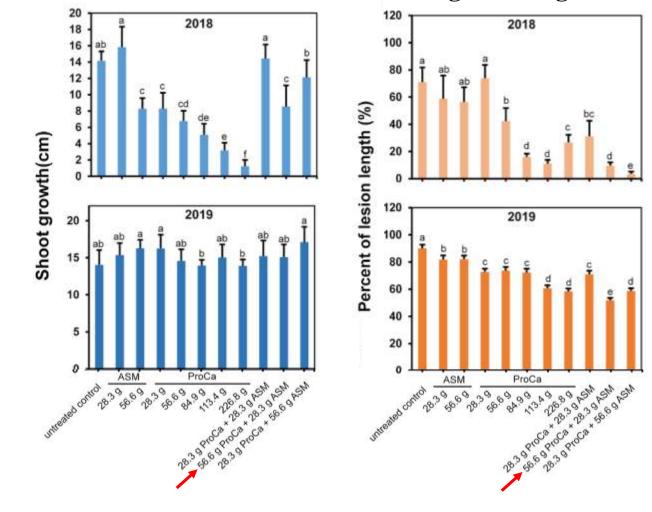
Problem: In young high-density apple plantings, <u>shoot growth is inhibited at</u> <u>these rates!</u> Suppression of fire blight = sacrifice the time to reach to the top wire. **Can we use reduced rates?** No, reduced rates sacrifice disease suppression.

- 1. Prohexadione Ca (Apogee)
- Apply after petal fall for 3 times, 8 oz / 100 g
- 2. Acibenzolar-S-methyl (Actigard 50WG)
- Apply during and after bloom, 8 oz / 100 g


Problem: In young high-density apple plantings, <u>shoot growth is inhibited at</u> <u>these rates!</u>

Suppression of fire blight = sacrifice the time to reach to the top wire. Can we use reduced rates? Reduced rates sacrifice disease suppression. How about combining the two materials?

Combinations of low rates of ProCa and ASM for shoot blight management

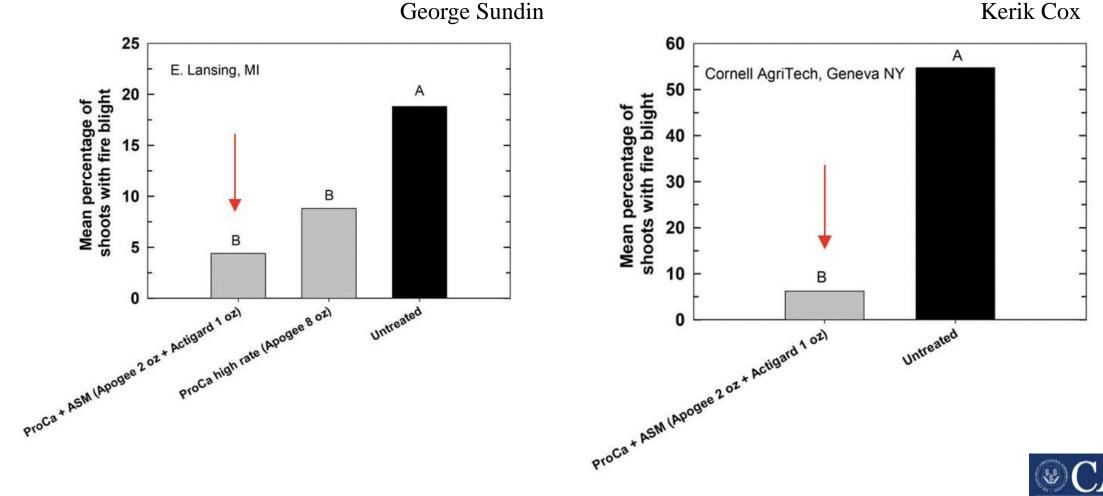


George Sundin, MSU

Combinations of low rates of ProCa and ASM for shoot blight management

George Sundin, MSU

Post-Bloom Petal Fall:


Current protocol for balancing shoot growth and shoot blight suppression (for young high-density plantings):

- Four weekly applications of Apogee (2 oz) + Actigard (1 oz).
- Tank mix the two products
- 1st application at king bloom petal fall.
- Widely adopted in Michigan.

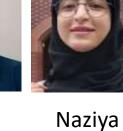
George Sundin, MSU

2 oz Apogee + 1 oz Actigard experiments, MI and NY, 2019

The Connecticut Agricultural Experiment Static Putting Science to Work for Society since 187

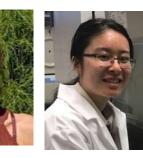
Acknowledgement

Zeng Lab



Amine Hassani Salma Mukhtar

James


Standish

Nabi

Renee

Smith

Zhouqi Cui

Collaborators

Blaire Steven

Ken Johnson

George

Sundin

Srdjan Acimovic

2023-51300-40727 2020-67013-31794 2017-51106-27001

