Eliminating Chronic Disease Using a Farm-based Approach:
Caseous Lymphadenitis (CL)

Anne Lichtenwalner DVM PhD
University of Maine
Cooperative Extension
Animal and Vet. Sci.
1) “Cheesy gland”: Chronic bacterial infection
 Corynebacterium pseudotuberculosis
 - Stays in the immune system
 - May cause skin or internal abscesses

2) Can be spread from animal to animal:
 - Must have skin penetration

3) Persistent in the environment

4) Use antibody response to test for presence of bacteria in unvaccinated animals

5) Vaccines are available; not highly effective
Corynebacterium pseudotuberculosis: lymph nodes

1. External: Firm, dry abscesses - slow to develop
2. Internal: Weight loss, coughing
CL: Internal abscesses (goat at necropsy)

Chest wall lifted away from lungs to show inflammation due to CL abscess.
CL: Internal abscesses (goat at necropsy)

Lung tissue with CL internal abscess (opened) showing dry exudate.
CL: How contagious is it?

- **Transmissibility**
 - Direct inoculation of bacteria into new host
 - Cut or ulcer, contact with exudate
 - Bites from flies that have contacted exudate
 - Rubbing on tree, etc, that has exudate on it
 - Inhalation of infected secretions
 - Sheep with bronchial lymph node abscesses: coughing
 - Milk?
 - If mammary lymph infections present
 - See more recent info (below)
CL: Can it be cured?

Treatment:

– Vaccines or antitoxins:
 • Don’t prevent or cure, but may decrease abscesses

– Immune clearance ineffective
 • Toxins overcome normal immune defenses

– “Hides out” inside cells
 • Uptaken by macrophages; survives and is spread to lymph nodes

– Antibiotics
 • In vitro, many are effective
 • In vivo, nothing works: food animal limitations re antibiotics
 – Rifampin with tetracycline was useful in early infection
 » Senturk and Temizel, 2006. Veterinary Record 159(7): 216-217
Non-spore former, but environmentally stable

- *C. pseudotuberculosis* wasn’t killed by 4 months in soil samples containing exudate from CL abscesses, and after 11 months in sterilized soil samples (40°F, 72°F, 98°F and ambient conditions)

- *C. pseudotuberculosis* was killed after 3 hours in chlorinated tap water, but could survive up to 70 hours in distilled water.

- Disinfectants: many are effective against CL after thorough cleaning of surfaces. However: *rough surfaces such as wood may be impossible to disinfect*
• Detection:
 – Exposed animals: PLD antibodies
 • Test based on detecting antibodies
 • “Seropositives” carry the bacteria
• Prevention:
 – Vaccines not 100% effective
 • Boosters, accurate records needed
 • Vaccine will NOT cure, only help prevent abscesses
 • Using vaccine creates “seropositives”
 – Testing and culling seropositives: best method
 • But will this work for all farms?
Trial Methods

• SARE Grant: CL in Sheep
 – Visit farm: use farm vet if possible
 – Test sheep: 0 and at least 60 days
 – Initial SHI tests done by Washington State University
 – Report results (farm ID confidential)
 – Consultation
 • Biosecurity
 • Tailor methods to farm type
 • Survey
 – SHI test method developed at UMaine lab in Orono
 • Supports local industry
 • Create easier access to vigilance methods
 • Validate CL-free status for producers
Trial Results

- **Farm types tested**
 - Breeds: Many
 - Products: Fiber, meat, milk
 - Biosecurity: Varied greatly

- **CL status**
 - 8 of 17 had positive animals at first test (47%)
 - 22% of 705 sheep tested at least once were CL+
 - 8 of 9 negative farms stayed negative (1 didn’t retest)
 - *Closed herd and good biosecurity essential*
 - Inability to run test locally interfered with outcome
 - At follow-up, most of the positive farms had culled or isolated positive animals
Biosecurity: example (Farm 2)

- Breeding for fiber and meat:
 Animals may travel off farm: limited or no quarantine
- Tested “home” animals: all neg.
- Tested “returned” animals: 1 pos.
- Retested “home” animals: new positive

Followup: culled all positives, implemented quarantine procedures for returning animals
Biosecurity Example: Isolated Farm

Wide zone of open forest
Closest farm over 500’ away

Risk: Wild animals likely
Biosecurity Example: Farm Layout

Summer:
sheep rotated based on parasite risk

Winter:
sheep housed in plastic barn

Risk: Quarantine area (star) too close to main flock; new disease can spread
Farmer compliance

- All farmers directly contacted said they would cull
 - Follow-through really varied. “Favorites” or great producers were unlikely to be culled.
 - Most were unwilling to replace wooden feeders or other areas where CL transmission likely.
 - Most thought their biosecurity was excellent
 - All were highly concerned and involved in the success of their flocks
 - Some of the 17 farms had camelids; none had goats

Farmers resented “buying” chronic disease

- “Do unto others” was a strong motive
Conclusions

• Prevalence higher than expected
• Does being CL-free add to value?
 – “Caveat emptor”: Selling CL free breeding stock=value
• Other species affected: goats, camelids
 – Be careful of guard animals: need testing, too
• Farm type dictates whether vaccination ok
 – Reluctance to cull is common
 – Vaccination takes away possibility of testing
 – No strategy works longterm without culling
• Biosecurity and determination dictate whether disease-free status is achievable
Outcomes

- Awareness of CL increased
 - Added value of CL-free status
- Biosecurity templates in development
 - Google Earth model may help communications about farm layout and biosecurity
- SHI method now in Orono on a research basis
 - Project continuing studying goat dairies in 2014-5
 - Sheep testing available in 2015 if serum samples can be collected/shipped to UMAHL (no charge for testing)
- Decision Tree: Start by knowing your status
 - Assess the cost of CL-free status for your farm
 - May not work for everyone
Outcomes: Recommendations

• Know the CL status of your flock: retest as needed
• Maintain closed flock/herd with high biosecurity
 – Notify visitors about biosecurity
 – Inform shearers about biosecurity
 – New or returning animals:
 • Don’t immediately mix with “home” flock
 – “nose to nose ≠ quarantine”
 • CL test immediately at entry and prior to release from quarantine (2 mo. later)
 – If positive, cull or sequester positives
 » Retest exposed animals at 2 months: cull if +
 » Keep quarantined until all negative for CL at 2 consecutive tests 2 months apart
New animal to CL- flock: genetics needed?

Is source flock CL+?

Yes: Don’t buy *or* Quarantine and test at entry and 2 mo.

No: Quarantine and test at entry and 2 mo.
Outcomes: Decision Tree

CL+ at end of quarantine?

Yes:
Slaughter or **Sequester**
No shared spaces, feed, water, equipment; AI only (if a ram)

No:
Add to group
Keep CL- via good biosecurity
Impacts

• Stopped CL on several farms
 – Estimated 20% improvement in fiber yields
 – Potentially reduced carcass condemnation

• Outreach to SR vets
 – Free testing may enhance communications
 – Help establish VCPR with farmers

• Farmer-to-farmer:
 – Added value of CL-free stock
 – Building biosecurity awareness

• Students:
 – projects and experience
Recent Undergrad Student Theses on SR

- Edith Kershner: Case study of sheep farms with or without CL.
- Abigail Royer: Detecting CL using complete blood counts.
- Amy Fish: Evaluating macrophage responses to CL.
- Rachel Chase: Evaluating neutrophil responses to CL.
- Cassandra Karcs: CL prevention in small ruminants.
- Hallie Lipinski: CL and its connection to milk.
- Anna Desmarais: Selenium and footrot prevalence.
- Alden West: Composting effects on coccidia.
- Alexandra Settele: Anthelmintic resistance in *H. contortus*
- Amanda Chaney: Identification of internal parasites of sheep and goats
- Caitlin Minutolo: Effect of age on susceptibility to ovine footrot.
- Nicole Maher: CL webinar for producers
- Casey Athanas: Pedigree analysis to help eradicate footrot.
- Katrina Glaude: Should sheep with footrot be culled?
- Kayla Porcelli: Biosecurity survey for footrot positive farms
- Marie Smith: Pasture management to control parasites in small ruminants.
References

 - Augustine JL and Renshaw HW. Longevity of *C. pseudotuberculosis* in six Texas soils. P 102
 - Augustine JL, Richards AB, Renshaw HW. Persistence of *C. pseudotuberculosis* in water from various sources. P 104.

- Baird GJ, Malone FE. Control of caseous lymphadenitis in six sheep flocks using clinical examination and regular ELISA testing. The Veterinary Record 2010;166:358-362.

Acknowledgements

- Collaborating Farmers of Maine
- Collaborating Veterinarians:
 - Drs. Becky Myers Law and colleagues
 - Dr. Tammy Doughty
 - Dr. Don McLean
 - Dr. Beth McEvoy
- NE SARE: Carol Delaney
- Extension colleagues: Richard Brzozowski and Donna Coffin
- Technical/lab assistance:
 - Edith Kershner, Anne Ryan, Hallie Lipinski, Abbie Royer
 - Ann Bryant
- University of Maine Cooperative Extension
- University of Maine School of Food and Agriculture