Home-use ozonation systems are being marketed to consumers as safe, effective methods of sterilizing produce. Should you buy one?

While proper cooking can prevent food-borne illness, fruits and vegetables are often eaten raw. Eating contaminated produce can lead to food-borne illness, which can be serious—and sometimes fatal.

Ozone, which in the upper atmosphere protects the Earth from ultraviolet radiation, is receiving increased attention as a sterilizer for fresh produce.

Ozone is a gas with three atoms of oxygen, compared to the two in the oxygen we breathe. Although ozone has been used in European water treatment facilities for nearly 100 years, the U.S. food industry has only recently expressed interest in this oxidizing agent. Ozone offers many advantages over traditional disinfectants. Compared to chlorine, the most widely used sanitizer for fresh produce, ozone has stronger oxidizing and antimicrobial activity. This makes it a good natural purifier. Furthermore, ozone disinfects without producing toxic or cancer-causing compounds like those produced by chlorine treatments.

As an alternative to chlorine for removing microbes such as bacteria and mold from fresh fruits and vegetables, ozone may offer promising results for industrial food processing. But do you need an ozone food sterilizer at home?

Our evaluation

At the University of Maine, we evaluated two home-use food sterilizers—“ozone system A” and “ozone system B”— using lowbush blueberries. We measured the concentration of ozone produced by each unit, as well as each unit’s effectiveness in reducing the amount of bacteria and other microbes on the blueberries.
In our evaluation, blueberry samples were treated with ozonated water, distilled water, and chlorine. Two methods of ozone application were used:

- Blueberries were treated (according to product directions) by soaking them in two liters of distilled water with ozone gas bubbled through it, for a contact time of ten minutes. (Figure 1.)
- Blueberries were washed in two liters of ozonated distilled water for a contact time of two minutes. (Figure 2.)

We then analyzed microbe levels on the blueberries using FDA Standard Methods. We also measured ozone concentrations in the ozone washes using an indigo colorimetric method. Unwashed blueberries served as the control for this study.

Our conclusion: distilled water is effective and affordable

Consumption of toxic residues from using the ozone washes did not prove to be a concern. After each trial we measured the concentration of ozone in the water. Residual ozone concentrations in the wash water following treatment were negligible—less than 0.001 mg of ozone per liter.

Home-use ozone system B killed more microbes than system A in both of our trials, although the differences were not statistically significant. The results of these trials reflect the variability and unpredictability of these two home-use ozonation systems.

Overall, home-use ozone systems did not improve food safety quality appreciably in our study, when they were used according to product directions. Considering these results, as well as the cost of such systems, we recommend washing your fresh fruits and vegetables with distilled water for 60 to 120 seconds as a more efficient and economical way to improve quality and safety.

Figure 1. Microbes on blueberries treated with two home-use ozone-based food sterilizers.

Ten-minute ozone bubble-wash treatments

![Graph showing microbial counts for untreated and ozonated water samples.](image)

Figure 1 shows the microbes found on lowbush blueberries following treatment with home-use food sterilizers that bubbled ozone through two liters of distilled water for ten minutes.

Bacteria and yeast populations on the berries treated with ozone system B were lower than the populations on the unwashed berries, but not significantly. Bacteria and mold counts on berries treated with ozone system A were actually higher than on the unwashed berries, and mold counts were higher in samples treated with system B. (The increase in microbial counts following treatment may be explained by variations arising from sampling.)
Figure 2. Comparison of the microbes on blueberries treated with ozone, chlorine, and distilled water

Two-minute wash treatments

<table>
<thead>
<tr>
<th></th>
<th>Mold</th>
<th>Aerobic Bacteria</th>
<th>Yeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unwashed Berries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone "System A"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone "System B"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100ppm Chlorine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distilled Water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 compares the antimicrobial effectiveness of two-minute washes using water ozonated with system A and system B, distilled water, and chlorine (100 ppm).

Berries treated with chlorine and distilled water had fewer microbes than berries treated with either of the ozone-based food sterilizers. Berries treated with chlorine had the fewest microbes. However, microbe populations were only marginally greater on berries treated with distilled water.

Berries treated with water from ozone system A had more yeast and mold than berries treated with water from ozone system B. But both ozone systems produced berries with higher bacterial populations than the unwashed berries. (This may be explained by variations arising from sampling.)

1 “Ozone system A” = the Ozone Water Purifier XT-301 from Air-Zone, Inc., Leesburg, VA
 “Ozone system B” = the J0-4 Multi-Functional Food Sterilizer from Indoor Purification Systems, Layton, UT.
2 100-parts-per-million (ppm) chlorine solution
5 The initial microbial population was reduced by less than 0.5 log.
6 Ozone treatments for this trial were conducted by placing a 350-gram blueberry sample into two liters of ozonated distilled water for a contact time of 2 minutes.
Contact your county Extension office to find out about programs in your area.

- Agriculture
- Business & Community Development
- Food & Health
- Gardening & Horticulture
- Home, Family & Youth
- Natural Resources
- Pests & Plant Diseases
- Safety & Preparedness

Androscoggin and Sagadahoc Counties
24 Main Street
Lisbon Falls, ME 04252-1505
800-287-1458 (in Maine)
or 207-353-5550
E-mail: andsag@umext.maine.edu

Aroostook County
22 Hall Street, Suite 101
Fort Kent, ME 04743-7131
800-287-1421 (in Maine)
or 207-834-3905
E-mail: cesnas@umext.maine.edu
PO Box 727, Houlton Road
Presque Isle, ME 04769-0727
800-287-1462 (in Maine)
or 207-764-3361
E-mail: cescas@umext.maine.edu

Cumberland County
PO Box 9300
Portland, ME 04104-9300
800-287-1471 (in Maine)
or 207-780-4205
E-mail: cescmb@umext.maine.edu

Franklin County
147 Farmington Falls Road, #2
Farmington, ME 04938-6403
800-287-1478 (in Maine)
or 207-778-4650
E-mail: cesfrk@umext.maine.edu

Hancock County
63 Boggy Brook Road
Ellsworth, ME 04605-9540
800-287-1479 (in Maine)
or 207-667-8212
E-mail: ceshnk@umext.maine.edu

Kennebec County
125 State Street, 3rd Floor
Augusta, ME 04330-5682
800-287-1481 (in Maine)
or 207-622-7546
E-mail: cesken@umext.maine.edu

Knox and Lincoln Counties
377 Manktown Road
Waldoboro, ME 04572
800-244-2104 (in Maine)
or 207-832-0343
E-mail: ceskl@umext.maine.edu

Oxford County
9 Olson Road
South Paris, ME 04281-6402
800-287-1482 (in Maine)
or 207-743-6329
E-mail: cesoxf@umext.maine.edu

Penobscot County
307 Maine Avenue
Bangor, ME 04401-4331
800-287-1485 (in Maine)
or 207-942-7396
E-mail: cespen@umext.maine.edu

Piscataquis County
Court House Complex
165 East Main Street
Dover-Foxcroft, ME 04426-1396
800-287-1491 (in Maine)
or 207-564-3301
E-mail: cespsq@umext.maine.edu

Somerset County
7 County Drive
Skowhegan, ME 04976-4209
800-287-1495 (in Maine)
or 207-474-9622
E-mail: cessom@umext.maine.edu

Waldo County
992 Waterville Road
Waldo, ME 04915-3117
800-287-1426 (in Maine)
or 207-342-5971
E-mail: ceswal@umext.maine.edu

Washington County
34 Center Street
Machias, ME 04654
800-287-1542 (in Maine)
or 207-255-3345
E-mail: ceswsh@umext.maine.edu

York County
21 Bradeen Street, Suite 302
Springvale, ME 04083
800-287-1535 (in Maine)
or 207-324-2814
E-mail: cesyrk@umext.maine.edu

© 2006
A Member of the University of Maine System

For a printed copy of the UMaine Extension publications catalog call 1-800-287-0274 (ME only) or 207-581-3792. (TTY 1-800-287-8957).

For the most current versions of our publications visit our Web site at www.umext.maine.edu/

© 2006
A Member of the University of Maine System

For a printed copy of the UMaine Extension publications catalog call 1-800-287-0274 (ME only) or 207-581-3792. (TTY 1-800-287-8957).

For the most current versions of our publications visit our Web site at www.umext.maine.edu/

Published and distributed in furtherance of Acts of Congress of May 8 and June 30, 1914, by the University of Maine Cooperative Extension, the Land Grant University of the state of Maine and the U.S. Department of Agriculture cooperating. Cooperative Extension and other agencies of the U.S.D.A. provide equal opportunities in programs and employment. 07/06